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6 ABSTRACT: Rhodococcus opacus is a bacterium that has a high tolerance to
7 aromatic compounds and can produce significant amounts of triacylglycerol
8 (TAG). Here, we present iGR1773, the first genome-scale model (GSM) of
9 R. opacus PD630 metabolism based on its genomic sequence and associated
10 data. The model includes 1773 genes, 3025 reactions, and 1956 metabolites,
11 was developed in a reproducible manner using CarveMe, and was evaluated
12 through Metabolic Model tests (MEMOTE). We combine the model with
13 two Constraint-Based Reconstruction and Analysis (COBRA) methods that
14 use transcriptomics data to predict growth rates and fluxes: E-Flux2 and
15 SPOT (Simplified Pearson Correlation with Transcriptomic data). Growth
16 rates are best predicted by E-Flux2. Flux profiles are more accurately
17 predicted by E-Flux2 than flux balance analysis (FBA) and parsimonious FBA (pFBA), when compared to 44 central carbon fluxes
18 measured by 13C-Metabolic Flux Analysis (13C-MFA). Under glucose-fed conditions, E-Flux2 presents an R2 value of 0.54, while
19 predictions based on pFBA had an inferior R2 of 0.28. We attribute this improved performance to the extra activity information
20 provided by the transcriptomics data. For phenol-fed metabolism, in which the substrate first enters the TCA cycle, E-Flux2’s flux
21 predictions display a high R2 of 0.96 while pFBA showed an R2 of 0.93. We also show that glucose metabolism and phenol
22 metabolism function with similar relative ATP maintenance costs. These findings demonstrate that iGR1773 can help the metabolic
23 engineering community predict aromatic substrate utilization patterns and perform computational strain design.
24 KEYWORDS: ATP maintenance, genome-scale models, omics data, 13C-metabolic flux analysis, predictive biology

1. INTRODUCTION
25 Rhodococcus opacus PD630 (hereafter, R. opacus) is a Gram-
26 positive aerobic bacterium known for its pronounced ability to
27 produce triacylglycerol, a biofuel precursor, from aromatic
28 monomers.1,2 R. opacus can be used as a ‘biological funnel’ to
29 convert heterogeneous mixtures of aromatic compounds from
30 the thermal or catalytic deconstruction of lignin into lipid-based
31 biofuels.3 Its natural tolerance toward the aromatic compounds
32 from lignin deconstruction is partially attributed to a high-flux β-
33 ketoadipate pathway that facilitates aromatic catabolism. The β-
34 ketoadipate pathway converts aromatic compounds into acetyl-
35 CoA and succinyl-CoA,4 both of which enter central metabolism
36 via the TCA cycle. High TCA cycle flux produces large amounts
37 of ATP and NADH, and as a result, R. opacus can synthesize
38 highly reduced products.2,5

39 Previous work on R. opacus has identified aromatic tolerance
40 and utilization mechanisms based on transcript profile changes
41 that do not cause large amounts of flux rewiring and that are not
42 dependent on many genetic mutations. The transcriptome and
43 fluxome of the wild type were examined when grown with sugars
44 and model lignin monomers (i.e., aromatics) for a base strain as
45 well as for adaptively evolved mutants.5−7 A key finding is that

46the adaptive mutants could achieve optical densities (OD600) up
47to 1900% higher than the wild-type strain when grown on high
48concentrations of aromatics, despite a limited number of
49mutations (∼12 single nucleotide polymorphisms on average)
50and limited flux rewiring.5,7 The mutants, however, show big
51differences in their transcriptomic profiles when compared to
52the wild-type strain, which may account for their abilities to
53tolerate and utilize higher concentrations of aromatics.6,7 In
54addition, the molecule-level mechanisms for aromatic substrate
55utilization and regulation have been elucidated.8 Despite these
56advances in understanding the metabolism and gene regulation
57in R. opacus, a predictive genome-scale model derived from its
58genome has yet to be developed.
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59 Genome-scale models (GSMs) are comprehensive mathe-
60 matical summaries of the reactions encoded in an organism’s
61 genome. For example, flux balance analysis (FBA) uses GSM to
62 optimize metabolic fluxes through mass balance constraints
63 under the assumption that these fluxes maximize biomass
64 production (i.e., produce the maximum growth rate).9 The FBA
65 method has been successful when modeling fast-growing lab-
66 adapted species, but it is less accurate for organisms with slower
67 growth rates.10 Using data reflecting the internal state of the cell
68 (e.g., omics data) is expected to improve the accuracy of flux
69 predictions. In contrast to input and output flux measurements,
70 omics data are not as straightforward to integrate.11 A variety of
71 Constraint-Based Reconstruction and Analysis (COBRA)
72 methods that integrate omics data have been developed
73 including iMAT,12,13 GIMME,14,15 E-Flux,16 E-Flux2 and
74 SPOT,17 tFBA,18 GX-FBA,19 FCG,20 and CORDA.21 Such
75 methods may be used to leverage high throughput tran-
76 scriptomics data to improve model predictions.22−25 There is,
77 however, no ‘best’ method to guarantee the most accurate
78 predictions under all circumstances, so care must be taken to
79 identify differences, benefits, and drawbacks of each prediction
80 method in order to apply the method that is most suited to a
81 particular system.26

82 Here, we present and validate iGR1773, the first GSM for R.
83 opacus derived from its genome, providing a comprehensive
84 description of its internal metabolism and a valuable tool to
85 integrate omics data into metabolic flux predictions. iGR1773
86 consists of 3025 reactions and 1956 metabolites obtained from
87 annotating its completed genome,27 adding the corresponding
88 metabolic reactions, and testing the predictions derived by it.
89 Although previous publications have reported a GSM for R.
90 opacus PD630,28,29 this model did not use an annotation of the
91 R. opacus PD630 genome. This model repurposed the
92 Rhodococcus jostii GSM30 by doing some minor modifications
93 including setting fluxes to polyhydroxyalkanoates (PHA),
94 polyhydroxyvalerates (PHV), glycogen, and acetate to zero
95 and adjusting the TAG reaction to reflect the fatty acid
96 composition of R. opacus PD630.28 Notably, iGR1773 was
97 validated in three different ways: via the Metabolic Model Test
98 (MEMOTE) suite,31 by checking growth rate predictions, and
99 by comparing flux predictions to 13C-metabolic flux analysis
100 (13C-MFA) results. Flux and growth rate predictions from the
101 model were obtained through several COBRA methods,
102 including parsimonious FBA (pFBA) and two methods that
103 integrate transcriptomic data: E-Flux2 and SPOT. Briefly, E-

104Flux2 uses transcript measurements as upper and lower bounds
105for flux values, and SPOT finds the maximum correlation
106between transcript levels and reaction rates. These methods
107were chosen because the solutions they produce are non-
108degenerate, and they have been validated by previous studies.17

109We found that of the three COBRA methods, E-Flux2 provided
110the best predictions for growth rates and central carbon fluxes,
111providing, with iGR1773, an accurate predictive method for
112future R. opacus studies.

2. RESULTS AND DISCUSSION
113iGR1773 was created through CarveMe32 and manually curated
114by refining the reversibility of two reactions based on
115thermodynamics and adding transport reactions needed for
116ATP synthesis. MEMOTE31 was used to ascertain the quality of
117the reconstruction, testing on par with state-of-the-art models.
118We tested iGR1773’s predictive capabilities in two different
119ways: by comparing quantitative predictions of growth rates
120with experimentally measured growth rates and by comparing
121flux predictions with 13C-MFA measurements. Growth rate and
122flux predictions were obtained through three different methods:
123pFBA, EFlux-2, and SPOT. FBA works by providing the fluxes
124that maximize biomass production whereas pFBA adds an extra
125step, in which the sum of squared fluxes is minimized while the
126biomass production flux is held at its maximum. EFlux-2 and
127SPOT work differently: they do not assume maximum biomass
128production but constrain fluxes based on transcriptomic
129measurements. E-Flux2 determines fluxes by solving a tran-
130script-adjusted FBA problem, and SPOT constrains fluxes by
131maximizing the correlation between fluxes and transcripts.
132Additionally, 13C-MFA and pFBA were used to determine that
133phenol and glucose metabolisms operate at roughly the same
134maintenance cost (i.e., similar amounts of ATP are lost to non-
135growth purposes per mmol of substrate consumed).
1362.1. Model Attributes and Refinement of Draft
137Reconstruction. iGR1773 was generated from a recent
138genome annotation27 and the genome-to-GSM tool CarveMe32

139 f1(Figure 1). The draft model produced by CarveMe was accurate
140but requiredmanual changes: two reactions needed to have their
141flux bounds adjusted to match known thermodynamic patterns.
142In the draft model, the succinate dehydrogenase reaction (EC
1431.3.5.1; succinate + FAD ↔ fumarate + FADH2) allowed flux
144only in the reverse direction. Based on 13C data demonstrating a
145complete TCA cycle in the forward direction,5 this reaction was
146allowed to have forward and reverse flux. Additionally, the draft

Figure 1. Reconstruction details and model validation. A draft version of the model was created through CarveMe, which was then augmented with
relevant uptake and biomass reactions and then manually curated to yield the iGR1773 R. opacus GSM.
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147 model contained a thermodynamically infeasible cycle that
148 allowed the model to produce unrealistic amounts of ATP. This
149 flaw was traced to two versions of 3-hydroxyadipyl-CoA
150 dehydrogenase (EC 1.1.1.35): one version of the reaction was
151 3-oxoacyl-CoA + NADH + H+ ↔ 3-hydroxyacyl-CoA + NAD+

152 and the other version was 3-hydroxyacyl-CoA→ 3-oxoacyl-CoA
153 + H2. When combined, this reaction pair has the net effect of
154 converting NADH and H+ into H2 and NAD+. The resultant H2
155 could then be used to pump H+ into the periplasm by a
156 hydrogenase reaction (EC 1.12.5.1; H2 + 2H+

cytosolic +
157 menaquinone → 2H+

perisplasm + menaquinol), with subsequent
158 periplasmic H+ used to drive ATP synthase to produce an
159 unrealistic quantity of ATP. The reaction of 3-hydroxyacyl-CoA
160 → 3-oxoacyl-CoA + H2 was blocked to prevent this loop from
161 generating ATP. Four reactions were added to the draft model to
162 allow hydrogen ions travel to the periplasm to drive ATP
163 synthase flux. These reactions included cytochrome b6/f
164 complex periplasm, active co2 transporter facilitator (peri-
165 plasm), cytochrome c oxidase, and cytochrome oxidase bd.
166 These reactions allow reduced energy-carrying molecules, like
167 plastoquinol and ferrocytochrome, to participate in moving
168 hydrogen ions to the periplasm. After these manual changes, the
169 finalized model contained 3025 reactions and 1956 metabolites

t1 170 (Table 1).

171 2.2. Model Evaluation through MEMOTE. The R. opacus
172 GSM was evaluated with MEMOTE,31 producing a score
173 commensurate with the best in the field. MEMOTE addresses
174 the problem of assessing the quality of GSMs, given their
175 complexity (GSMs often include thousands of metabolites and
176 reactions that are assigned to subcellular locations). Adequate
177 model quality tests are critical because mass balance or
178 stoichiometric errors can render erroneous model predictions.
179 The annotated and curated model was determined to have 100%
180 stoichiometric consistency, 100% mass balance, and 100%
181 metabolite connectivity. The annotation scores consist of 79%
182 for metabolites, 77% for reactions, 33% for genes, and 100% for
183 SBO (systems biology ontology). MEMOTE scores are
184 designed to reflect the average completeness of annotations
185 across databases since there are multiple databases for genome-
186 scale model data (e.g., BiGG and KEGG). For each category
187 (e.g., metabolites, reactions, and genes), a score is calculated for
188 each database as a percentage of the category members that
189 contain an annotation corresponding to that database. The
190 overall MEMOTE score for the category is calculated by
191 averaging the database-specific annotation scores. The overall

192score for the model was 91%. As a reference, a recent E. coli
193GSM, iML1515, has an overall MEMOTE score of 91%.33

1942.3. Experimental Calculation of Growth Parameters.
195R. opacus grown in glucose showed a significantly higher
196substrate uptake rate (P < 0.001, two-tailed Student’s t test) and
197yield than when it was grown in phenol (P < 0.001, two-tailed
198Student’s t test). Paired sets of time course growth and
199consumption curves were used to determine the growth rate,
200yield coefficient, and substrate uptake rate of wild type R. opacus
201when grown on phenol or glucose, and for an adapted mutant
202strain, PVHG6, when grown on phenol. The fitted parameters
203 t2(Table 2) were confirmed by plotting fitted growth and

204consumption curves against measured data (Figures S1−S3).
205The higher uptake rate and yield contributed to the faster
206growth rate of R. opacus in glucose than in phenol. The aromatic
207adapted strain, PVHG6, had a faster growth rate in phenol than
208the wild-type strain (P = 0.002, two-tailed Student’s t test). The
209mutant was developed through∼30 passages of R. opacus grown
210on a mixture of aromatic substrates including phenol. This
211process selected for mutations that increased growth rate, so the
212observed difference between WT and PVHG6 was expected.
213While the mutant’s growth rate in phenol was higher than that of
214WT, the biomass yield showed no difference between the two
215strains (P = 0.09, two-tailed Student’s t test).
2162.4. Growth Rate Predictions. iGR1773 predicted growth
217 f2rates in an acceptable, but by no means perfect, manner (Figure
218 f22). The method that provided the most accurate predictions was
219E-Flux2, with SPOT generating the least accurate predictions.
220pFBA produced predictions that were somewhat less accurate
221than those provided by E-Flux2. The fact that enzyme
222constraints increase the accuracy of growth rate predictions
223over unbounded pFBA is consistent with recent reports from
224Saccharomyces cerevisiae genome-scale modeling.34,35 Growth
225rates under phenol were lower and better-predicted than those
226under glucose.
227E-Flux2 made the most accurate growth rate predictions,
228while the othermethods either displayed larger errors (pFBA) or
229completely failed (SPOT) (Figure 2). It is not surprising to see
230SPOT predict null growth rates since it is based on maximizing
231the correlation between fluxes and transcripts and not
232maximizing growth. pFBA and E-Flux2 both typically predict
233faster growth rates than those that have been measured
234experimentally. pFBA is expected to overestimate growth rates
235by aiming to predict the maximum theoretical growth rate. We
236would expect that the actual growth rate would be less than the
237theoretical maximum due to other factors. For example, soil
238bacteria such as R. opacus need to consume many carbon
239sources, and maintaining this ability imposes a cost on the
240growth rate for any one carbon source. Additionally, pFBA seeks
241out the most efficient use of carbon resources and does not

Table 1. iGR1773 Model Statistics

Genes

total genes 1773
Reactions

total reactions 3025
transport reactions 824
purely metabolic reactions 1862

Metabolites

total metabolites 1956
Model Properties

metabolic coverage 1.71
degrees of freedom 847
compartments 3

Table 2. Fitted Growth Parameters for Wild-Type (WT) and
Aromatic-Adapted (PVHG6) Strainsa

growth rate yield coefficient substrate uptake rate

WT phenol 0.065 ± 0.001 0.048 ± 0.005 1.4 ± 0.2
PVHG6 phenol 0.080 ± 0.003 0.040 ± 0.002 2.0 ± 0.1
WT glucose 0.260 ± 0.005 0.073 ± 0.004 3.6 ± 0.2

aGrowth rate has units of h−1, yield coefficient has units of g biomass/
mmol substrate, and substrate uptake rate has units of mmol
substrate/g biomass/h. All values are averages and standard deviations
of three biological replicates.
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242 factor in competing interests, including the cost to make the
243 enzymes. Since enzyme cost is not included in pFBA
244 calculations, pathways with high carbon efficiency are preferred
245 even though these pathways may have low in vivo flux due to the
246 overall resource cost in producing the corresponding enzymes.36

247 Growth rates under phenol were lower, and better predicted,
248 than growth rates under glucose. Typically, carbon sources that
249 are consumed through the TCA cycle (e.g., acetate, succinate,
250 and fumarate) result in lower growth rates than for growth on
251 sugars since TCA cycle metabolites are generally more oxidized
252 than sugars. Additionally, when TCA cycle metabolites are used
253 as sole carbon sources, gluconeogenesis is required to produce
254 amino acid precursors. Unlike glycolysis, which produces energy
255 molecules, gluconeogenesis consumes ATP and NADH.
256 Furthermore, phenol is a toxic substance, which imposes an
257 additional metabolic burden via stress response.
258 A possible explanation for why the growth rate predictions are
259 better for phenol than for glucose is that there is only one
260 catabolic pathway for phenol while there are multiple options for
261 glucose. Specifically, phenol degradation into TCA cycle
262 metabolites has low degrees of freedom. Conversely, there are
263 multiple pathways for glucose catabolism, including glycolysis
264 (EMP), Entner−Doudoroff (ED), and pentose phosphate
265 pathways. These pathways can be flexibly regulated and are
266 underdetermined by pFBA.
267 2.5. Comparison of Model Predictions and 13C-MFA
268 Fluxes. When compared to fluxes measured by 13C-MFA, the
269 flux predictions from the COBRA methods were more accurate
270 for phenol metabolism than for glucose metabolism. Among the
271 COBRA methods we tried, EFlux-2 provided the best
272 predictions, whereas SPOT provided the worst predictions for
273 the phenol uptake case but the second best for glucose. pFBA
274 provided the same results as FBA, which were very good for
275 phenol but not very accurate for glucose. The comparison of
276 predicted fluxes with 13C-MFA flux measurements is the most
277 rigorous test of GSM and COBRA methods since 13C-MFA
278 measurements are the gold standard for quantifying intracellular
279 reaction rates,37 and they provide detailed information about
280 central metabolism instead of aggregated measurements (e.g.,
281 just growth rate). 13C-MFA, however, is an expensive procedure
282 to carry out.38 Thus, it typically provides fewer conditions for
283 comparison than grow/no grow tests or growth rates. However,

284the reduction in conditions is more than compensated for by the
285increased metabolic resolution.
2862.5.1. Comparison of Phenol Flux Predictions and 13C-MFA
287Fluxes. 13C-MFA of phenol metabolism was obtained from a
288previous publication.5 The glucose 13C-MFA data was obtained
289following the same procedure as discussed in that publication.
290The transcriptomics data and growth curves for phenol came
291from Henson et al.7 The glucose growth curves and
292consumption data are new in this work, and they were generated
293from cultures grown under the same conditions as theHenson et
294al. data (except for the carbon source). For comparisons with
295

13C-MFA data, the carbon source uptake rates for pFBA, E-
296Flux2, and SPOT were normalized to 100 units (instead of the
297experimentally determined mmol substrate/g biomass/h), in
298accordance with 13C-MFA convention.
299For the phenol case, intracellular fluxes were accurately
300 f3f4predicted by the COBRA methods (Figures 3 and 4). Fluxes
301predicted by E-Flux2 were very close to the fluxes measured
302through 13C-MFA (R2 = 0.96 without considering ATP
303maintenance). pFBA predicted fluxes that were slightly less
304accurate than those predicted by E-Flux2 (R2 = 0.93). Though
305minor compared to the other methods, the largest divergences
306between E-flux2 predictions and 13C-MFA measurements were
307found in anaplerotic reactions and transport reactions. For
308pFBA, the trend continued with the largest divergences coming
309from anaplerotic reactions and transport reactions. The
310prediction errors for anaplerotic reactions may be a result of
311their underdetermined nature in 13C-MFA due to reactions with
312matching labeling patterns. pFBA and E-Flux2 both under-
313predicted the flux of CO2 out of the cell, which is a direct
314consequence of growth rate overprediction. Since these
315methods assume complete carbon efficiency to maximize
316biomass, it is expected that they would underestimate the
317amount of carbon lost as CO2.
318For phenol, SPOT’s predictions were the least accurate (R2 =
3190.66). Despite the decent R2 value, a closer analysis of SPOT’s
320predictions, guided by biochemical knowledge, shows that it
321generates an unrealistic metabolic flux profile. Most notably,
322SPOT critically underestimates TCA cycle fluxes, especially with
323respect to isocitrate dehydrogenase, α-ketoglutarate dehydro-
324genase, and succinyl-CoA synthetase. When phenol uptake was
325normalized to 100 units, each of these reactions had errors over
326100 units. Particularly noteworthy are isocitrate dehydrogenase

Figure 2.Growth rate predictions. Growth rate predictions are acceptable, but not perfect. Comparison of observed growth rates and model predicted
growth rates for wild type consuming glucose (WT-G), wild type consuming phenol (WT-P), and aromatic-adapted strain consuming phenol (PVHG-
P). SPOT completely fails. The points represent growth rates with units (h−1). SSR = sum of squared residuals.
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327 and α-ketoglutarate dehydrogenase, which were predicted to
328 have negative and zero flux, respectively (Table S1). To
329 compensate for the underpredictions of the TCA cycle
330 reactions, the flux through the glyoxylate shunt was over-
331 predicted. SPOT predicted the flux of isocitrate lyase to be∼150
332 units, while the 13C-MFA determined its flux to be only 0.4
333 (Figure 4). This discrepancy casts doubt on the viability of
334 SPOT as a widely applicable standalone method for predicting
335 fluxes from transcript data.
336 E-Flux2 and SPOTwere also applied to phenol metabolism in
337 the PVHG6 strain. Since pFBA does not take transcript
338 measurements into account, its predictions are the same for
339 the wild type and mutant strains. Overall, the transcript profiles

340of the two strains on phenol were very similar,7 so it was
341expected that the mutant strain flux predictions from EFlux-2
342and SPOTwould be similar to the wild type predictions. Indeed,
343EFlux-2 makes accurate flux predictions for phenol metabolism
344in the mutant strain (wild type EFlux-2, R2 = 0.96; mutant
345EFlux-2, R2 = 0.95; Figure S4). Interestingly, despite similar
346transcriptomics measurements, SPOT’s predictions of fluxes in
347the mutant strain are different from the wild type (Table S2)
348(wild type SPOT, R2 = 0.66; mutant SPOT, R2 = 0.39 Figure
349S4). The greater difference of SPOT’s predictions between the
350strains compared to E-Flux2 demonstrates that E-Flux2 is more
351robust to small changes in transcript values than SPOT. As in the

Figure 3. Flux predictions for phenol metabolism. Predictions are accurate for the three COBRA methods. The y axis represents the predicted flux by
each of the COBRA methods (pFBA, E-Flux2, and SPOT) and the x axis represents the flux measured via 13C-MFA. The fluxes are normalized to the
carbon source uptake (units are mmol reaction/100 mmol phenol uptake). The first R2 value does not include ATP maintenance reaction and the R2

value in parentheses includes the ATP maintenance reaction. The x axis error bars are 90% confidence intervals as determined via 13C-MFA, and if
applicable, the y axis error bars are standard deviations of flux predictions made from three biological replicates of transcriptomics data.
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352 wild type’s phenol condition, the largest errors in SPOT’s
353 mutant predictions occurred in the TCA cycle (Figure S5).
354 2.5.2. Comparison of Glucose Flux Predictions and 13C-

f5 355 MFA Fluxes. In the case of glucose, each of the three predictive

356 f5methods show limitations (Figure 5). As observed with the

357phenol condition, E-Flux2 had the best predictions, though in

358this case, its predictions only fit moderately well (R2 = 0.63).
359SPOT’s predictions had the second best fit for glucose (R2 =

Figure 4. Phenol flux maps. Flux map predictions when phenol is the sole carbon source. The flux values are relative flux distributions based on 100
mmol of phenol consumed by the cell to generate 100 mmol of influx toward both acetyl-CoA and succinyl-CoA. A mapping of abbreviations to
metabolite names is given in Table S8.
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360 0.45), and pFBA’s predictions were largely inaccurate (R2 =
361 0.28) (Figure 5). One major difference between the three
362 methods occurred in the predictions for the glucose uptake
363 pathways. Two of these pathways, the EMP pathway and the ED
364 pathway, share the enzymes that connect glyceraldehyde-3-
365 phosphate to pyruvate but differ in their initial enzymes.
366 Between the two, R. opacus shows a strong preference for the ED
367 pathway, with approximately 95% of glucose consumed via this
368 pathway despite a complete EMP pathway also being present.39

369 While the two run essentially in parallel, this stark disparity is
370 nonetheless unexpected, as the EMP pathway produces an extra
371 molecule of ATP per molecule of glucose metabolized.36

372 Potentially, the enzyme efficiency of the ED pathway explains
373 this preference. Predictably, while 13C-MFA determined that
374 93% of glucose was consumed through the ED pathway, pFBA

375predicted that the ED pathway would have zero flux because
376creating extra ATP helps facilitate reactions including the
377biomass production reaction. Interestingly, the methods that
378incorporate transcriptomics into the genome-scale model
379recapitulate some ED flux. E-Flux2 and SPOT predict 21%
380and 38% of glucose consumption to occur via the ED pathway,
381 f6respectively (Figure 6). These non-zero ED flux values
382contribute to the increased accuracy of the transcriptomics-
383based methods over FBA-based methods.
384Similar to the predictions made for phenol growth conditions,
385pFBA predicted TCA cycle fluxes of glucose metabolism with
386less accuracy than E-Flux2 and SPOT. pFBA overestimated the
387fluxes of α-ketoglutarate dehydrogenase, succinate dehydrogen-
388ase, fumarase, and malate dehydrogenase (Table S3). All of
389these enzymes, except fumarase, produce reducing equivalents

Figure 5.Glucose metabolism flux predictions. Glucose metabolism flux predictions are much less accurate for the COBRAmethods considered here.
Comparison of 13C-MFA fluxes with model-predicted fluxes for glucose metabolism in the wild type strain. Horizontal and vertical axes and error bars
are as described in Figure 3. In the same way, the R2 value in parentheses is the R2 value when ATP maintenance is included in the calculation.
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390 in the form of NADH or FADH2. FBA and pFBA’s
391 overprediction of these TCA cycle reactions results in additional
392 energy molecules and carbon losses.

3932.6. ATP Maintenance Flux Upper Bound Estimates.
394Multiple methods for determining the non-growth associated
395ATP maintenance flux (NGAM) show that glucose metabolism

Figure 6. Glucose flux maps. Flux map predictions when glucose is the sole carbon source. The flux values are relative flux distributions based on 100
mmol of phenol consumed by the cell to generate 100 mmol of influx toward both acetyl-CoA and succinyl-CoA.
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396 and phenol metabolism function with similar efficiency (i.e.,
397 relative ATP used for maintenance). NGAM is the amount of
398 ATP generated in ametabolic model that is not consumed by the
399 reactions in the model. It is thought that this excess ATP is used
400 for cellular “housekeeping” tasks such as maintaining ionic
401 gradients and producing enzymes via transcription and trans-
402 lation.40 A cell is considered to be operating at higher efficiency
403 when its ATP maintenance flux is low as less ATP is “lost” to
404 non-growth purposes.
405 The GSM calculated non-growth associated ATP main-
406 tenance flux via FBA. When ATP maintenance loss is high, less
407 biomass can be produced because ATP (growth associated) is a
408 reactant in the biomass equation, and ATP is a required cofactor
409 for many reactions that produce biomass precursors. The flux
410 configuration with the maximum growth rate has zero ATP
411 maintenance flux, and the flux configuration with the maximum
412 ATPmaintenance flux has zero biomass production (Figure S6).
413 The true ATP maintenance loss can be estimated by mapping
414 the experimental growth rate onto the ATP maintenance flux vs
415 growth rate curve. This method gives the same result as fixing the
416 growth rate and then calculating the maximum ATP
417 maintenance flux (using fixed growth associated ATP
418 maintenance). Using this method, the model predicts that the
419 non-growth associated ATP maintenance flux was 23.4 mmol
420 ATP per gram dry cell weight per hour when consuming phenol
421 and 63.0 mmol ATP per gram dry cell weight per hour when

f7 422 consuming glucose (Figure 7). In 13C-MFA, ATP maintenance
423 flux is a fitted variable constrained by amino acid labeling
424 patterns. The 13C-MFA ATP maintenance flux was 9.2 mmol
425 ATP per gram dry cell weight per hour when consuming phenol
426 and 18.9 mmol ATP per gram dry cell weight per hour when
427 consuming glucose (Figure 7).
428 The ATP maintenance flux calculated using FBA is roughly
429 three times greater than the value determined by 13C-MFA
430 (Figure 7), a discrepancy that can be traced to FBA’s
431 fundamental assumption that cells are optimized to maximize
432 biomass production. As described above, FBA was used to
433 estimate the ATP maintenance flux by fixing the model’s growth
434 rate to the experimental growth rate and then maximizing the
435 amount of ATP maintenance flux. As a result, the ATP
436 maintenance value predicted by FBA represents the upper
437 bound of possible ATPmaintenance values in the same way that
438 FBA’s growth rate predictions represent the theoretical
439 maximum growth rate. Interestingly, while glucose had a higher

440absolute ATP maintenance flux per hour than phenol, when the
441data was normalized per mmol of substrate uptake, this
442difference was largely eliminated. This indicates that per mole
443of substrate, both conditions use roughly the same amount of
444ATP for non-growth activities despite the difference in uptake
445rates.

3. CONCLUSIONS
446In this article, we present a GSM for R. opacus PD630: iGR1773.
447This model provides a tool for predicting this organism’s
448metabolism and can help fulfill its potential as a platform for
449converting lignin derivatives into liquid fuels and chemicals.
450iGR1773 was validated with the Metabolic Model Test
451(MEMOTE) suite,31 by checking growth rate predictions, and
452through comparisons of flux predictions via COBRAmethods to
453

13C-MFA measurements. The COBRA method that provided
454the most accurate predictions was E-Flux2 followed by pFBA
455and SPOT. In general, the COBRAmethods weremore accurate
456for phenol than for glucose. Additionally, the model was used to
457demonstrate that R. opacus’ metabolic network operates with
458similar efficiency when consuming phenol or glucose. We expect
459this GSM to be a stepping-stone toward building progressively
460more predictive models of R. opacus metabolism that will guide
461future metabolic engineering efforts.

4. MATERIALS AND METHODS
4624.1. Strains and Data. The data used in this manuscript
463originated either in previous publications5,7 or are newly
464 t3reported in this work (Table 3). The experiments in this work
465used Rhodococcus opacus PD630 (DSMZ 44193) as the wild-

Figure 7. ATP maintenance flux as determined by metabolic flux analysis (MFA) and flux balance analysis (pFBA). Absolute ATP maintenance is the
mmol of ATP used by 1 g of dry cell weight per hour, and relative ATP maintenance is the mmol of ATP used per mmol of either glucose or phenol
consumed.

Table 3. Sources of the Experimental Data Used in This Paper

phenol (wild type and
PVHG6) glucose (wild type)

transcript data Henson et al. (2018)7 Henson et al. (2018)7

growth curves Henson et al. (2018)7 first published in this
paper

substrate consumption
curves

Henson et al. (2018)7 first published in this
paper

13C-metabolic flux
analysis

Roell et al. (2019)5 first published in this
paper

biomass composition first published in this
paper

first published in this
paper
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466 type strain and a Rhodococcus opacus PD630 mutant strain
467 PVHG6, which had previously been adaptively evolved on a
468 mixture of phenol, vanillate, guaiacol, 4-hydroxybenzoate, and
469 guaiacol.7 All data was generated from fermentation experiments
470 wherein R. opacus was cultured in minimal media B with either
471 phenol or glucose as the sole carbon source and 1 g/L
472 ammonium sulfate as the nitrogen source.41 The transcript data
473 used in this analysis comes from a previous publication7 stored
474 in the National Center for Bioinformatics Sequence Read
475 Archive in bioproject PRJNA431604, and the data was
476 reprocessed to count per million (CPM) normalization. The
477 growth curve data for phenol conditions, OD600, and substrate
478 consumption data, were from a previous report,7 while the
479 glucose data was generated in this work. The 13C-MFA data for
480 phenol was previously reported,5 and the glucose data was
481 obtained using the same procedure as described therein. The
482 biomass composition data for both phenol and glucose was
483 obtained using a custom spectrophotometry method described
484 in Section 4.4.
485 4.2. Draft Model Reconstruction and Gap Filling. The
486 initial version of the GSM for R. opacus was made using
487 CarveMe, an automated tool developed to produce GSMs.32 For
488 this reconstruction, the following versions were used: CarveMe
489 1.5.1, Diamond 0.9.14, and CPLEX 12.10.0.0. CarveMe follows
490 a top-down approach where a universal model and genome
491 sequence are the only required inputs to construct a model in a
492 fast and reproducible manner. The GSM was based on a recent
493 genomic sequence of theRhodococcus opacus PD630 (Refseq ID:
494 GCF_020542785.1).27 The initial model was made using the
495 command line command “carve r_opacus_bologna.faa -u
496 grampos -o r_opacus_bologna_raw.xml”. After the model
497 generation, this initial draft model was also gap-filled to ensure
498 growth on M9 and LB media using the command “gapfill
499 r_opacus_bologna.xml -m M9,LB -o r_opacus_bologna_gap-
500 filled.xml”.
501 4.3. Addition of Uptake Reactions (Notebook A). As
502 generated by CarveMe, the GSM did not contain uptake
503 reactions for all the carbon sources R. opacus can metabolize, so
504 these reactions were added in notebook A. This initial model
505 contained all the reactions needed for the model to consume
506 several carbon sources including glucose, 4-hydroxybenzoate,
507 vanillate, and benzoate. To account for growth with phenol, the
508 metabolites for extracellular and intracellular phenol were added
509 as well as the reactions for phenol exchange (adding phenol to
510 the medium), phenol transport (phenol entering the cell), and
511 phenol monooxygenase (phenol + NADH + O2 + H+ →
512 catechol + NAD+ + H2O; EC 1.14.13.244). For growth with
513 guaiacol, intracellular and extracellular guaiacol were added, and
514 so were reactions for exchange, transport, and guaiacol-o-
515 demethylase (guaiacol + NADPH + O2 → catechol +
516 formaldehyde + NADP+ + H2O; EC 1.14.14.-). Additionally,
517 an intracellular metabolite for triacylglycerol (TAG) and
518 reactions for its production from 1,2-diacyl-sn-glycerol and
519 palmitoyl-CoA and transport out of the cell were added to the
520 model. The bounds of two reactions, catalyzed by 3-
521 hydroxyadipyl-CoA dehydrogenase and succinate dehydrogen-
522 ase, were adjusted to avoid thermodynamically infeasible cycles.
523 This notebook also contains tests to ensure that the model can
524 explain the growth in glucose, phenol, vanillate, 4-hydrox-
525 ybenzoate, guaiacol, and benzoate. In addition to these aromatic
526 carbon sources, R. opacus PD630 has also been shown to be able
527 to consume mannitol, ribose, xylose, lactose, and maltose as sole
528 carbon sources according to the BacDive page for DSMZ 44193.

529The model from CarveMe was able to consume all these carbon
530sources without the need for manual edits.
5314.4. Addition of CustomBiomass Reactions (Notebook
532B). The biomass composition of R. opacus when grown with
533various substrates was quantified in terms of carbohydrate, lipid,
534and protein fractions. Carbohydrates were measured using a
535hydrolysis procedure. Lipid extraction, purification, and
536measurement were conducted using the Bligh and Dyer
537method.42 Proteins were measured with an L-8800 AAAHitachi
538High-Speed Amino Acid Analyzer. These measurements are
539summarized in Table S4.
540The biomass composition data and previously reported amino
541acid data5 were used to make customized biomass equations for
542the R. opacus GSM when grown in glucose or phenol. These
543biomass equations were based on the Bacillus subtilis biomass
544equation that comes by default with CarveMe for Gram-positive
545bacteria.43 In the customized R. opacus biomass equations, the
546coefficients for precursors that are not amino acids, lipids, or
547carbohydrates (e.g., energy molecules and salts) are the same as
548they are in the B. subtilis biomass equation. The coefficients of
549lipid and carbohydrate precursors were scaled proportionally to
550the measured amount of lipids or carbohydrates in R. opacus.
551The amino acid coefficients were calculated using the measured
552milligrams of amino acids per gram of biomass and the measured
553mole percentage of each amino acid. Table S5 contains a
554comparison of the biomass equations for R. opacus with phenol,
555R. opacus with glucose, and B. subtilis.
5564.5. Addition of Metabolite, Reaction, and Gene
557Annotations (Notebook C). The reconstruction from
558CarveMe included detailedmetabolite and reaction annotations.
559The only metabolites in the R. opacus model that were not
560included in the BiGG Universal model were guaiacol and
561triacylglycerol.9 All but 25 of the reactions in the R. opacusmodel
562were found in the Universal model, so these reactions were left
563unannotated. The model’s gene IDs are the NCBI non-
564redundant protein accession numbers (with the prefix ‘WP_’)
565from the NCBI database (Refseq ID: GCF_020542785.1).44

566The proper system biology ontology (SBO45) numbers were
567also added to all metabolites, reactions, and genes. Further, since
568the annotations in the Universal model are the Python type, List,
569they were converted into dictionaries with keys to match
570MEMOTE’s requirements.
5714.6. Experimental Determination of Growth Rate and
572Substrate Uptake Rate (Notebook D). Experimental growth
573rates were calculated by first collecting time-course OD600 data
574from fermentations with 5 mM phenol or glucose as the carbon
575source and 1 g/L ammonium sulfate as the nitrogen source. The
576growth rate was calculated using the slope of the log-
577transformed OD vs time regression since the growth in the
578exponential phase follows the equation X(t) = X0eμt, where X(t)
579represents the OD at time t, X0 is the initial OD, μ is the growth
580rate in h−1, and t is the time in hours. The yield coefficient (g
581biomass/mmol substrate) was determined using the slope of the
582line made when plotting the amount of substrate consumed vs
583the amount of biomass produced. The substrate consumption
584rate (mmol substrate/g biomass/h) was calculated by dividing
585the growth rate (h−1) by the yield coefficient (g biomass/mmol
586substrate). For each of the three conditions (wild-type phenol,
587wild-type glucose, and PVHG6 phenol), there were three
588biological replicates of growth and consumption data. The
589growth parameters were calculated individually for each trial and
590then averaged for each condition (Table 2).
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591 4.7. Growth Rate Simulations. The R. opacus GSM was
592 used to make growth rate predictions. While GSMs are
593 stoichiometric models without a time component, when the
594 input and output reactions are properly scaled, these models can
595 be used to predict growth rates.46 The model was calibrated to
596 simulate the behavior of 1 g of dry cell weight for 1 h. The
597 substrate uptake rate was set to the amount of substrate, in
598 mmol, that 1 g of biomass would consume in 1 h, and the
599 biomass formation reaction was set up so that its flux would
600 equal the amount of biomass in grams produced in 1 h. Growth
601 rate (μ) is defined according to the equation dX/dt = μX, where
602 dX/dt is the rate of change of biomass and X is the biomass
603 concentration. Translating to the GSM, dX/dt is equal to the
604 biomass flux, and since the model was scaled for 1 g of biomass
605 (X = 1), the biomass flux is equal to the growth rate.
606 4.8. Comparison with 13C-MFA. Another approach for
607 validating the GSM is to compare its flux predictions with fluxes
608 determined using 13C-MFA. Since the 13C-MFA metabolic
609 network contains∼70 reactions and the iGR1773GSM contains
610 ∼2300 reactions, reactions from the two cannot be directly
611 compared. A mapping of reactions from the GSM to the 13C-
612 MFA reactions was made to compare genome-scale flux
613 predictions and 13C-MFA measurements (Table S6). Some
614 reactions in the 13C-MFA model involve multiple reactions in
615 the GSM. This can happen when two reactions occur in series or
616 when they occur in parallel. An example of reactions in series is
617 the conversion of 3-phosphoglycerate to phosphoenolpyruvate.
618 In the GSM, 3-phosphoglycerate is converted to 2-phosphogly-
619 cerate and then to phosphoenolpyruvate, while in the 13C-MFA,
620 3-phosphoglycerate is directly converted to phosphoenolpyr-
621 uvate. The minimum flux value of reactions in series was
622 compared to 13C-MFA flux. Additionally, some reactions in the
623

13C-MFA have multiple reactions that act in parallel in the GSM.
624 An example is malate dehydrogenase. In the 13C-MFA, there is
625 only a single isozyme (that produces NADH), while in theGSM,
626 there are isozymes that produce NADH, menaquinone, and
627 ubiquinone. The sum of fluxes of parallel reactions was
628 compared to 13C-MFA flux. The quality of GSM fit was
629 determined by calculating the R2 (coefficient of determination)
630 between the GSM model fluxes and the 13C-MFA fluxes with
631 and without the ATP maintenance flux.47

632 4.9. Methods to Predict Fluxes from Transcripts. E-
633 Flux2 predicts fluxes from transcripts by solving an FBA problem
634 where the upper and lower bounds for each reaction have been
635 modified according to the absolute expression for the
636 corresponding gene.17 The underlying idea is that, given a
637 limited translational efficiency and enzyme accumulated over
638 the time, the mRNA level can be considered as an approximate
639 upper bound on the maximum amount of metabolic enzyme
640 available and hence as a bound on reaction rates. Briefly, after a
641 suitable flux bound normalization, the upper bound for each flux
642 with transcript information is substituted by the absolute
643 expression for the corresponding gene (for a positive upper
644 bound, zero otherwise). If the reaction is reversible, the lower
645 bound is substituted by the negative value of the absolute
646 expression for the corresponding gene (if lower bound is
647 negative, zero otherwise). An FBA problem is solved using these
648 bounds and, as a last step, which differentiates E-Flux2 form its
649 previous version of E-Flux,16 the norm of the resulting flux is
650 minimized. This ensures a single solution, unlike E-Flux. SPOT,
651 instead of optimizing growth, maximizes the correlation
652 between fluxes and the measured transcript profile, as
653 determined through the Pearson correlation coefficient.17 The

654assumption is that enzymatic transcript concentrations and
655fluxes tend to be as proportional to each other as allowed by
656stoichiometric constraints and enzyme presence. SPOT trans-
657forms the problem into an equivalent semi-definite program-
658ming problem that can be solved efficiently (eq 8 in ref 17),
659which is the version we use here.
6604.10. Summary of Jupyter Notebooks in This Pub-
661lication. Table S7 contains the list of the Jupyter notebooks
662used for creating the figures in this paper.
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